The Need

In its press release, Samsung added a slight twist of ‘Virtual Reality‘ and the ‘Metaverse‘ to, well, catch more attention. The basic idea is that importing and rendering objects in a virtual environment is a taxing task. Over the past few years, this simple task has become more and more intricate due to the increase in the need for memory size and bandwidth. Similarly, simulations have also taken off which as the name suggests, reproduce complex real-world scenarios in a virtual environment. For gamers, calculations such as ray tracing which take place in real-time are extremely complicated to say the least. The keyword here is ‘real-time ray tracing’ which happens alongside normal rasterization functions. As per Samsung, each RT scene takes upwards of “60 to 140 pages worth for one second of an in-game scene”. ~Samsung To solve all these problems, Samsung is developing GDDR6W (x64), the first next-generation graphics DRAM technology.

Fan-Out Wafer-Level Packaging (FOWLP) Technology

Now doubling the capacity and performance does not come without new innovations. GDDR6W brings forth Samsung’s Fan-Out Wafer-Level Packaging (FOWLP) or FOWLP, for short, technology. Fear not because this technology isn’t as complicated as it sounds. GDDR6W is based on Samsung’s GDDR6 memory with double the I/O pins (32 -> 64). What’s interesting is that this memory type has a size similar to GDDR6 using Samsung’s new stacking approach. As this memory is equipped with 2x more memory chips in an identically sized package (Compared against G6), the graphic DRAM capacity has increased from 16Gb – 32Gb. This leads to a 50% memory size (area) reduction as compared to previous models. With GDDR6W, the memory dies are attached to a silicon wafer instead of a PCB. Due to this, an RDL (Re-distribution layer) is applied which enables much finer wiring patterns. Oh, did I mention that no PCB is involved? The lack of a PCB reduces the thickness and improves heat dissipation. ~ Samsung GDDR6W can generate as much bandwidth as HBM at the system level. Using 512 I/O pins and 22Gbps memory, a GDDR6W-based system has 1.4TB/s of system-level bandwidth. HBM on the other hand needs almost 8x more I/O pins standing at a massive 4096 using much slower 3.2Gbps memory to reach 1.6TB/s of system-level bandwidth. Furthermore, since G6W does not use microbumps due to the smaller I/O count, it is much more cost-effective without needing an interposer layer.

Release Date

Now for the real question, when will we see this memory in action? Samsung completed the JEDEC standardization for GDDR6W products in the second quarter of 2022. Samsung stated that with the help of GPU partners, it will branch out the use of G6W memory to small form factor devices such as notebooks as well as high-performance accelerators. Source: Samsung

Samsung Unveils GDDR6W Memory - 2Samsung Unveils GDDR6W Memory - 76